Mesenteric/Splanchnic Artery Duplex Imaging

This Guideline was prepared by members of the Society for Vascular Ultrasound (SVU) as a template to aid the vascular technologist/sonographer and other interested parties. It implies a consensus of those substantially concerned with its scope and provisions. This SVU Guideline may be revised or withdrawn at any time. The procedures of SVU require that action be taken to reaffirm, revise, or withdraw this Guideline no later than three years from the date of publication. Suggestions for improvement of this Guideline are welcome and should be sent to the Executive Director of the Society for Vascular Ultrasound. No part of this Guideline may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.
Mesenteric/Splanchnic Artery Duplex Imaging

PurpOse

Duplex imaging of the mesenteric arteries is performed to determine the absence or presence of stenosis, aneurysm, or other pathological condition of the splanchnic arteries. Duplex is also used to locate and determine location, extent and type of pathology present.

Common Indications

Some of the common indications for performance of mesenteric arterial duplex imaging include:

- Abdominal pain and cramping associated with eating
- Persistent diarrhea
- Significant unexplained weight loss
- Abdominal bruits
- Unexplained gastrointestinal symptoms
- Postoperative evaluation of a vascular reconstruction or endovascular procedure
- Suspected aneurysm of mesenteric, hepatic, and/or splenic arteries
- Suspected celiac artery compression syndrome
- Suspected vascular insufficiency of the intestine

Contraindications and Limitations

Contraindications for mesenteric artery assessment are few; however, some limitations exist and may include the following:

- Open abdominal wounds, sutures or staples
- Drains and/or peritoneal dialysis catheters
- Emphysematous breathing patterns, inability to hold breath
- Overlying bowel gas
- Obesity
- Large firm/tense abdomen
- Limitations in patient ability to change positioning
- Patient cooperation.

Patient Preparation

The patient should fast overnight to minimize bowel gas, and hold medications in the am. The patient should not chew gum or mints or smoke the morning of the exam as this may increase swallowing of air. Studies should be completed early in the day to minimize bowel gas. Some labs prep all abdominal exam patients with a clear liquid for lunch and dinner the day prior to the exam plus fasting overnight.
GUIDELINE 1: PATIENT COMMUNICATIONS AND POSITIONING

The technologist/sonographer/examiner should:

1.1 Explain why the Mesenteric Artery Duplex Examination is being performed and indicate how long it will take.

1.2 Explain the procedure to the patient, taking care to ensure that the patient understands the necessity for each aspect of the evaluation.

1.3 Respond to questions and concerns about any aspect of the examination.

1.4 Educate patients about risk factors for and symptoms of mesenteric artery disease.

1.5 Inform patients about necessary life style changes due to vascular disease.

1.6 Refer specific diagnostic, treatment or prognosis questions to the patient's physician.

1.7 The exam is usually performed with the patient in a supine position; however, the lateral decubitus views may be useful in patient with large abdominal girth. Upright position is useful with suspected arcuate ligament compression.

1.8 The examiner should utilize as ergonomically comfortable a position as possible to avoid fatigue and injury.

GUIDELINE 2: PATIENT ASSESSMENT

Patient assessment must be performed before Mesenteric Artery Duplex Evaluation. This includes assessment of the patient’s ability to tolerate the procedure and an evaluation of any contra-indications to the procedure.

The technologist/sonographer/examiner should:

2.1 Obtain a complete, pertinent history by interview of the patient or patient’s representative and review of the patient’s medical record. A pertinent history includes:
 a. Review of any previous study for comparison and to document changes
 b. Presence of any signs or symptoms of peripheral vascular disease, cervical, abdominal or lower extremity bruit
 c. Current medical status, especially regarding arterial disease
 d. Relevant risk factors for peripheral vascular disease: diabetes; hypertension; cerebrovascular disease; coronary artery disease; family history of cerebrovascular, coronary artery, or peripheral vascular disease; family history of diabetes or hypertension; age; smoking, obesity
 e. Any information regarding previous studies for comparison and to document any changes. This should include any previous interventions or surgery.
 f. History of other related diseases such as fibromuscular dysplasia,
 g. Laboratory values, if available
 h. Current medications or therapies
 i. Results of other vascular studies.

2.2 Completes a limited or focused physical exam, which includes observation of patient for any surgical scars or incisions, etc.
GUIDELINE 3: EXAMINATION GUIDELINES

Diagnostic criteria must include application of published criteria or internally generated criteria. All diagnostic criteria must be internally validated. In general, gray scale imaging is used to identify and follow the selected vessel segments and to note the presence or absence of any disease process within the vessel lumen. Doppler evaluation is used to quantify disease severity and should include assessment for presence or absence of flow and, when flow is present, evaluation of peak systolic velocity, end diastolic velocity, and waveform analysis. At a minimum, spectral analysis should be obtained in proximal, mid and distal segments whenever possible, and proximal, throughout and distal to any flow disturbance identified. All spectral derived velocity information is obtained with a documented Doppler insonation angle of <60 degrees.

Based on the published data, the following cautions are included:

- Standardized angle of incidence is important
- The same angle of incidence should be used for both mesenteric artery and aorta velocity measurements, if possible
- Caution should be exercised when comparing estimated velocities of the same location from two different angles of insonation.
- If resting velocities in the celiac artery are elevated, reposition the patient in a supine position or have them take in a large deep breath and hold it while sampling the artery velocities again to evaluate for median arcuate ligament compression. If velocities remain elevated and/or turbulent, repeat velocity measurements with the patient sitting and standing. Normalization of the velocities suggests the problem is the result of arcuate ligament compression.

3.1 The patient’s physical and mental status is assessed and monitored during the examination, with modifications made to the procedure plan according to changes in the patient’s clinical status during the procedure. Also, findings are analyzed throughout the course of the examination to ensure that sufficient data is provided to the physician to direct patient management and render a final diagnosis.

3.2 Use appropriate duplex instrumentation (with Doppler frequencies typically in the range of 2.0 – 5.0 MHz), which includes real time display of both two-dimensional structure and motion in real-time (cineloop is helpful) and Doppler ultrasonic signal documentation with:
 a. spectral analysis with or without color Doppler imaging
 b. hardcopy capabilities (If possible, both cineloop, or video and static images are acquired.)
 c. color Doppler, while useful, is optional.

3.3 This exam is generally performed with a minimum preparation of fasting after 8 p.m. the evening prior to the examination except for water in order to minimize bowel gas. If the physician feels that this is an acute problem, the patient can be studied without fasting. It should be noted that if the patient has eaten within 6 hours of the study, standard velocity criteria and Doppler waveform analysis for determining stenosis do not apply and although patency of the SMA can be determined, embolus to the SMA branches cannot be ruled out.

Abdominal exams generally require various acoustic windows and patient positions in order to optimize the data available from a patient. These vary from patient to patient depending upon anatomy, body habitus, prior surgery, and the presence and location of bowel gas.

3.4 The mesenteric arteries should be identified and evaluated for color flow changes that would indicate an actual flow change, change in residual lumen, and particularly, the presence of imaged plaque.
3.5 A spectral waveform should be taken at an appropriate (60 degrees or less) Doppler angle of the adjacent aorta, at the origin of the celiac axis, hepatic artery, splenic artery and proximal, mid, and distal SMA, measuring the peak and end diastolic velocity of the celiac and SMA. Evaluation of the inferior mesenteric artery (IMA) should be performed; the presence of a prominent IMA may indicate significant compromise of the celiac axis and/or SMA flow. Additionally, a real time spectral trace of the sample volume moving through any suspected stenosis is obtained.

3.6 The gastroduodenal vessel should be evaluated if it is suspected the celiac is occluded. Normal blood flow direction is towards the feet, therefore flow towards the head can confirm celiac disease.

3.7 The aorta is identified and may be followed from the level of the diaphragm through its bifurcation into the right and left iliacs in both a transverse and sagittal plane. The image is noted for arterial wall dimension, presence of plaque, significant lumenal narrowing, and color flow changes.

3.8 Digital storage of static images and/or cineloop.

3.8 While uncommon, disease in the hepatic and splenic arteries (stenosis and/or aneurismal disease) may occur. A sample velocity and visual inspection of these vessels should be made.

3.9 Evaluate the patient’s physical and mental status prior to discharge.

GUIDELINE 4: REVIEW OF THE DIAGNOSTIC ULTRASOUND EXAM FINDINGS

The technologist/sonographer/examiner should:

4.1 Review data acquired during the Mesenteric Artery Duplex Examination to ensure that a complete and comprehensive evaluation has been performed and documented.

4.2 Explain and document any exceptions to the routine Mesenteric Artery Duplex Examination protocol (i.e., study omissions or revisions)

4.3 Record all technical findings required to complete the final diagnosis on a worksheet so that the measurements can be classified according to the laboratory diagnostic criteria (these criteria may be based on published or internally generated data but must be internally validated regardless of the source)

4.4 Document study results on a computerized program or in a laboratory logbook where performance of the exam, interpretation of exam results, and final diagnosis are recorded.

4.5 Alert the medical director or other responsible physician when immediate medical attention is indicated, based on the Mesenteric Artery Duplex Examination findings and local protocols.

GUIDELINE 5: PRESENTATION OF EXAM FINDINGS

The technologist/sonographer/examiner should:

5.1 Provide preliminary results when necessary as provided for by internal guidelines based on mesenteric artery examination findings.

5.2 Present record of diagnostic images, data, explanations, and technical worksheet to the interpreting physician for use in rendering a diagnosis and for archival purposes.
GUIDELINE 6: EXAM TIME RECOMMENDATIONS

High quality and accurate results are fundamental elements of the mesenteric artery duplex examination. A combination of direct and indirect exam components is the foundation for maximizing exam quality and accuracy.

6.1 Indirect exam components include pre-exam procedures: obtaining previous exam data, completing pre-exam paperwork, exam room and equipment preparation; patient assessment, history, and positioning (Guideline 1 and 2); and post-exam procedures: clean up; compiling, processing, and reviewing data for preliminary and/or formal interpretation (Guidelines 3, 4 and 5); exam charge and billing activities. Recommended time allotment is 30-35 minutes.

6.2 Direct exam components include equipment optimization, patient positioning throughout the exam, and the actual hands examination process. (Guideline 2) Recommended time allotment is 45-60 minutes.

GUIDELINE 7: CONTINUING PROFESSIONAL EDUCATION

Certification is considered the standard of practice in vascular technology. It measures an individual’s competence to perform vascular technology at the entry level. After achieving certification from either ARDMS (RVT credential) or CCI (RVS credential), the individual must keep current with:

7.1 Advances in diagnosis and treatment of Peripheral Vascular Disease (PVD) and/or mesenteric artery disease treatment.

7.2 Mesenteric Artery Duplex Examination protocols or published laboratory diagnostic criteria.

7.3 Advances in other duplex and/or other technology used for the Mesenteric Artery Exam.

REFERENCES

- Owen C. Renal Artery and Mesenteric artery/Splanchnic artery Duplex Imaging Examination; SVU Professional Performance DVD Series. 2009